
DROPS

Challenge
The digital banking division operates in a diverse
IT landscape, including IBM i (aka iSeries, AS/400)
as database server, a core RPG application, and a
front-end UI developed in .NET in Microsoft Azure.

Deployment on IBM i was slow and difficult, as teams
struggled with traditional change management
tools and a highly fragmented separation of
duties. For security reasons, an external company
was employed to promote release packages, while
another set of internal users performed the actual
install. This externalized operation was costly and
delayed the delivery of new software features.

 Meanwhile, on the .NET side, all front-end work was
full CI/CD using Azure DevOps.

DevOps Transformation
The core banking application on IBM i is highly
strategic. So, to modernize methods and rationalize
costs, the architecture team needed to bring IBM i
development into the same Azure DevOps pipeline
methodology as their front-end apps. The goal was
to use existing cloud-based Azure tools to pilot all
deployment, spanning native IBM i objects, .NET
code, and a Java application residing in the IFS
(Integrated File System).

Hybrid Cloud & Security
All IBM i systems at the bank run on premise in the
same data center, while the Azure front-end is
managed and served by cloud-based resources.

To comply with strict security regulations, the
private environments (development, test, and pre-
production) had to be isolated from the customer-
facing production environment.
So, in a true hybrid cloud infrastructure, the bank
configured two independent and isolated cloud
instances: a private development cloud and
a partially public production cloud. The IBM i
development server makes use of a cloud-based
development tool stack, while the IBM i production
server presents a cloud-based UI to customers
via a public interface.
The development IBM i server has no connection
to the outside world, and no communication
is permitted between the two cloud instances,
except through a highly controlled enterprise-
level mechanism.
At the start, this strict network isolation presented
certain challenges during the deployment phase
of the application lifecycle.

Deployment between
‘segregated’ cloud
environments
Complete network segregation was facilitated using
ARCAD’s DROPS. To deploy from the development
cloud to the production cloud, DROPS manages a
deployment package (in the case of IBM i, a savefile)
containing tested application objects. DROPS retrieves
this package from Azure Artifacts and pushes it out to
the production cloud, from where it is deployed on
demand from Azure out to the production server.

SUCCESS STORY

Multinational Bank achieves Security
Compliance using DROPS to Deploy across

‘Segregated’ Hybrid Clouds
One of the largest banking and financial services corporations in Canada

sought to deploy multi-platform in a high security environment

www.arcadsoftware.com/drops/

DROPS

“The progress we’ve made is incredible. The team’s feedback has been all positive. We now deploy
ALL artifacts securely across our hybrid cloud environment. ARCAD’s DROPS has led to a reduction
in work, and time savings”, Development Manager, Digital Banking

As no tool could span both development and
production environments, Azure Artifacts is
replicated on each environment and a separate
DROPS server interacts with each of the Azure
Artifacts instances.
An Azure pipeline now automates the build,
packaging and deploy of the savefile from Dev
to QA, populating the Azure Artifacts instance in
Dev. A second Azure pipeline in the production
domain then uses the replicated Azure Artifacts
instance together with ARCAD metadata repository
knowledge to validate the incoming release and
activate the deployment to production.
This ensures a universal, secure, and compliant
deployment process: all RPG, .NET, and Java
components are deployed synchronously across
isolated cloud environments, with automated
rollback on error.

Change tracking and
Compliance
When integrating IBM i within Azure, a key challenge
was the ability to capture a deployment package
and identify it correctly.

DROPS captures the unique package identifier
externalized from metadata exposed during the
development process to ensure that objects
deployed to production are the exact same
objects that were tested in the QA environment.
This identifier then ‘travels’ with the changed
objects, enabling change tracking throughout the
application life cycle and out to production.
This means the entire lifecycle can now be tracked
from Azure DevOps. It is easy to view which
developer made the change request in the first
place, against which work item in Azure Boards,
and even which specific source lines have been
changed.
This gives a high level of transparency and ac-
countability of changes, with clear segregation
of duties and visibility at all levels. Auditors can
be provided with complete lifecycle information
about changes that were made months ago.

Arcad
software

Azure Dev &
QA CICD Pileline

Development
private cloud instance

Production
hybrid cloud instance

Set of changes

Feature

New code

Pull
Request

Pull
Request

Release Master

Testing
Environment

Production
Environment

Azure Production
CD Pipeline

10110

Azure Artifact
repository

Commit

IBM i Dev
& QA Server

Azure Git
Server

DROPS DROPS

Ops

Dev

ARCAD for DevOps

Azure Artifact
repository

Full hybrid cloud: IBM i and Microsoft Azure

IBM i Production
Server

www.arcadsoftware.com/drops/

